The Neumann problem for a class of generalized Kirchhoff-type potential systems

نویسندگان

چکیده

Abstract In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators critical growth and real positive parameter. We show that has at least one solution, converges to zero in norm space as parameter tends infinity, via combining truncation technique, variational method, concentration–compactness principle exponent under suitable assumptions on nonlinearities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

On a class of Kirchhoff type systems with nonlinear boundary condition

A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

on a class of systems of n neumann two-point boundary value sturm-liouville type equations

employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of neumann two-point boundary valuesturm-liouville type equations. using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2023

ISSN: ['1687-2770', '1687-2762']

DOI: https://doi.org/10.1186/s13661-023-01705-6